IBT-UNAM : Dr. Sabino Pacheco Guillen | Dr. Sabino Pacheco Guillen
Investigador Tutor de Maestría y Doctorado Grupo de la Dra. Maria Alejandra Bravo email: | spacheco | @ibt.unam.mx |
---|
Teléfonos Oficina +52 (777) 311-4900 ext 227 Laboratorio +52 (777) 329-1624 desde la CDMX 562-27624 red UNAM 27624 +52 (777) 311-4900 ext 227
|
Estudiantes
M.C. Maria Luisa Zardo Emanuel Christian Macario I.B.Q. Aurora Massiel Diaz Ing. Diego Peinado Jean Piere Jesús Quiliche
Publicaciones recientes
Lopez-Molina,S. do Nascimento,N.A. Silva-Filha,M.H.N.L. Guerrero,A. Sanchez,J. Pacheco,S. Gill,S.S. Soberon,M. Bravo,A.
2021. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti PLoS Pathogens, 17, e1009199.
Sena da Silva,I.H. Gomez,I. Pacheco,S. Sanchez,J. Zhang,J. Luque Castellane,T.C. Aparecida Desiderio J. Soberon,M. Bravo,A. Polanczyk,R.A.
2021. Bacillus thuringiensis Cry1Ab domain III beta-16 is involved in binding to prohibitin which correlates with toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae) Applied and Environmental Microbiology, 87, e01930-20.
Pacheco,S. Quiliche,J.P.J. Gomez,I. Sanchez,J. Soberon,M. Bravo,A.
2020. Rearrangement of N-Terminal alpha-Helices of Bacillus thuringiensis Cry1Ab Toxin Essential for Oligomer Assembly and Toxicity Toxins (Basel), 12, E647.
Onofre,J. Pacheco,S. Torres-Quintero,M.C. Gill,S.S. Soberon,M. Bravo,A.
2020. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes Journal of Biological Chemistry, 295, 9606-9617.
Chimal-Cazares,F. Hernandez-Martinez,G. Pacheco,S. Ares,M.A. Soria-Bustos,J. Sanchez-Gutierrez,M. Izquierdo-Vega,J.A. Ibarra,J.A. Gonzalez,Y.M.J. Gorvel,J.P. Meresse,S. De la Cruz,M.A.
2020. Molecular Characterization of SehB, a Type II Antitoxin of Salmonella enterica Serotype Typhimurium: Amino Acid Residues Involved in DNA-Binding, Homodimerization, Toxin Interaction, and Virulence Frontiers in Microbiology, 11, 614.
do Nascimento,N.A. Torres-Quintero,M.C. Lopez-Molina,S. Pacheco,S. Romao,T.P. Pereira-Neves,A. Soberon,M. Bravo,A. Silva-Filha,M.H.N.L.
2020. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus Binary toxin against Bin-resistant and refractory mosquito species Applied and Environmental Microbiology, 86, 02770-19.
Gomez,I. Rodriguez-Chamorro,D.E. Flores-Ramirez,G. Grande,R. Zuniga,F. Portugal,F.J. Sanchez,J. Pacheco,S. Bravo,A. Soberon,M.
2018. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin Applied and Environmental Microbiology, 84, UNSP e01089-18.
Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Czajkowsky,D.M. Zhang,J. Soberon,M. Bravo,A.
2018. Helix alpha-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family Scientific Reports, 8, 10331.
Wang,Z. Fang,L. Zhou,Z. Pacheco,S. Gomez,I. Song,F. Soberon,M. Zhang,J. Bravo,A.
2018. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis) Journal of Biological Chemistry, 293, 11447.
Torres-Quintero,M.C. Gomez,I. Pacheco,S. Sanchez,J. Flores,H. Osuna,J. Mendoza,G. Soberon,M. Bravo,A.
2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity Scientific Reports, 8, 4989.
Soberon,M. Portugal,L. Garcia-Gomez,B.I. Sanchez,J. Onofre,J. Gomez,I. Pacheco,S. Bravo,A.
2018. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 93, 66-78.
Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Soberon,M. Bravo,A.
2017. Intra-molecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix alpha-3 that is needed for oligomerization and insecticidal activity Applied and Environmental Microbiology, 83, e01515-e01517.
Ares,M.A. Rios-Sarabia,N. De la Cruz,M.A. Rivera-Gutierrez,S. Garcia-Morales,L. Leon-Solis,L. Espitia,C. Pacheco,S. Cerna-Cortes,J.F. Helguera-Repetto,C.A. Garcia,M.J. Gonzalez Y Merchand J.A.
2017. The sigma factor SigD of Mycobacterium tuberculosis putatively enhances gene expression of the septum site determining protein under stressful environments New Microbiologica, 40, .
Ares,M.A. Fernandez-Vazquez,J.L. Pacheco,S. Martinez-Santos,V.I. Jarillo-Quijada,M.D. Torres,J. Alcantar-Curiel,M.D. Gonzalez Y Merchand J.A. De la Cruz,M.A.
2017. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor PLoS ONE, 12, e0173285.
Onofre,J. Gaytan,M.O. Pena-Cardena,A. Garcia-Gomez,B.I. Pacheco,S. Gomez,I. Bravo,A. Soberon,M.
2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta Peptides, 98, 93-98.
Xiao,Y. Dai,Q. Hu,R. Pacheco,S. Yang,Y. Liang,G. Soberon,M. Bravo,A. Liu,K. Wu,K.
2017. A Single Point Mutation Resulting in Cadherin Mis-localization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm Journal of Biological Chemistry, 292, 2933-2943.
De la Cruz,M.A. Ruiz-Tagle,A. Ares,M.A. Pacheco,S. Yanez,J.A. Cedillo,L. Torres,J. Giron,J.A.
2017. The Expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS, and by H-NS, CpxR, and CRP global regulators Environmental Microbiology, 19, 1761-1775.
Cardenas-Mondragon,M.G. Ares,M.A. Panunzi,L.G. Pacheco,S. Camorlinga-Ponce,M. Giron,J.A. Torres,J. De la Cruz,M.A.
2016. Transcriptional Profiling of Type II Toxin-Antitoxin Genes of Helicobacter pylori under Different Environmental Conditions: Identification of HP0967-HP0968 System Frontiers in Microbiology, 7, 1872.
Pacheco,S. Canton,E. Zuniga-Navarrete,F. Pecorari,F. Bravo,A. Soberon,M.
2015. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes AMB Express, 5, 73.
Behar,G. Pacheco,S. Maillasson,M. Mouratou,B. Pecorari,F.
2014. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability Journal of Biotechnology, 192PA, 123-129 * .
Pacheco,S. Behar,G. Maillasson,M. Mouratou,B. Pecorari,F.
2014. Affinity transfer to the archaeal extremophilic Sac7d protein by insertion of a CDR Protein Engineering Design & Selection, 27, 431-438 * .
Correa,A. Pacheco,S. Mechaly,A.E. Obal,G. Behar,G. Mouratou,B. Oppezzo,P. Alzari,P.M. Pecorari,F.
2014. Potent and specific inhibition of glycosidases by small artificial binding proteins (affitins) PLoS ONE, 9, e97438 * .
Ares,M.A. Alcantar-Curiel,M.D. Jimenez-Galicia,C. Rios-Sarabia,N. Pacheco,S. De la Cruz,M.A.
2013. Antibiotic resistance of gram-negative bacilli isolated from pediatric patients with nosocomial bloodstream infections in a Mexican tertiary care hospital Chemotherapy, 59, 361-368.
Gomez,I. Arenas,I. Pacheco,S. Bravo,A. Soberon,M.
2010. New Insights into the Mode of Action of Cry1Ab Toxin Used in Transgenic Insect-resistant Crops Southwestern Entomologist, 35, 387-390.
Cancino-Rodezno,A. Alexander,C. Villasenor,R. Pacheco,S. Porta,H. Pauchet,Y. Soberon,M. Gill,S.S. Bravo,A.
2010. The mitogen-activated protein kinase p38 is involved in insect defense against cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 40, 58-63 [corrigendum 43 (9) 898 2013 ].
Pacheco,S. Gomez,I. Arenas,I. Saab-Rincon,G. Rodriguez-Almazan,C. Gill,S.S. Bravo,A. Soberon,M.
2009. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping-pong" binding mechanism with Manduca sexta aminopetidase-N and cadherin receptors Journal of Biological Chemistry, 284, 32750-32757.
Rodriguez-Almazan,C. Zavala,L.E. Munoz-Garay,C. Jimenez-Juarez,N. Pacheco,S. Masson,L. Soberon,M. Bravo,A.
2009. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity PLoS ONE, 4, e5545-[Erratum 2013 8 (2)].
Pacheco,S. Gomez,I. Gill,S.S. Bravo,A. Soberon,M.
2009. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation Peptides, 30, 583-588.
Fernandez,L.E. Gomez,I. Pacheco,S. Arenas,I. Gill,S.S. Bravo,A. Soberon,M.
2008. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins Peptides, 29, 324-329.
Pacheco,S. Gomez,I. Sato,R. Bravo,A. Soberon,M.
2006. Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage Journal of Invertebrate Pathology, 92, 45-49.
Bravo,A. Pacheco,S. Gomez,I. Garcia-Gomez,B. Onofre,J. Soberon,M. 2017. Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action en: Crickmore,N. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Cham. Springer International Publishing. pags. 53-66
Bravo,A. Martinez-de-Castro,D.L. Sanchez-Quintana,J. Canton,P.E. Mendoza,G. Gomez,I. Pacheco,S. Garcia-Gomez,B.I. Onofre,J. Ocelotl,J. Soberon,M. 2015. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests en: Alouf,J.E. Comprehensive Sourcebook of Bacterial Protein Toxins 4a ed. Elsevier. pags. 858-873
Soberon,M. Garcia-Gomez,B.I. Pacheco,S. Sanchez-Quintana,J. Tabashnik,B.E. Bravo,A. 2015. Countering pest resistance with genetically modified Bt toxins en: *bravo Bt resistance-characterization and strategies for GM crops expressing Bacillus thuringiensis. Oxford. CABI. pags. 150-161
Pacheco,S. Soberon,M. 2012. Phage display: Fundamentals and applications en: *isabelg Tools to Understand Protein-Protein Interactions. Kerala. Transworld Research Network. 143
* Indica publicación con otra institución de adscripción